$\gamma = 81.4137 \ (18)^{\circ}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(tetrapropylammonium) di- μ_3 -iodidodi- μ_2 -iodido-diiodidodipyridinetetracopper(I)

Ehsan Jalilian

Department of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden Correspondence e-mail: ehsan.jalilian@mmk.su.se

Received 15 March 2010; accepted 18 March 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.023; wR factor = 0.068; data-to-parameter ratio = 34.6.

The title compound, $(C_{12}H_{28}N)_2[Cu_{3.194}I_6(C_5H_5N)_2]$ was prepared from reaction of copper powder, copper(I) oxide, hydroiodic acid, tetrapropylammonium iodide and pyridine under hydrothermal conditions. In the centrosymmetric $Cu_4I_6^{2-}$ anion, one Cu site is in a trigonal-planar coordination while the second Cu site, which is only partially occupied [site occupancy of 0.5968 (16)], is surroundedby three iodine atoms and one pyridine molecule in a distorted tetrahedral coordination.

Related literature

For further structural motifs and the luminescence properties of copper(I)iodide with substituted pyridine, see Cariati *et al.* (2005). For the extinction correction, see: Becker & Coppens (1974).

Experimental

Crystal data

 $\begin{array}{l} (C_{12}H_{28}N)_2[Cu_{3.194}I_6(C_5H_5N)_2]\\ M_r = 1495.3\\ Triclinic, P\overline{1}\\ a = 8.8974 (2) \ \mathring{A}\\ b = 11.8076 (3) \ \mathring{A}\\ c = 12.2176 (2) \ \mathring{A}\\ \alpha = 73.2442 (18)^{\circ}\\ \beta = 78.5398 (17)^{\circ} \end{array}$

Data collection

Oxford Diffraction Xcalibur3
diffractometer with a Sapphire-3
CCD detector
Absorption correction: Gaussian
(CrysAlis RED; Oxford

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.068$ S = 1.027574 reflections $V = 1198.74 (5) Å^{3}$ Z = 1 Mo K\alpha radiation $\mu = 5.29 \text{ mm}^{-1}$ T = 100 K 0.47 × 0.17 × 0.13 mm

Diffraction, 2008) $T_{\min} = 0.209$, $T_{\max} = 0.623$ 38326 measured reflections 7574 independent reflections 6526 reflections with $I > 3\sigma(I)$ $R_{int} = 0.020$

219 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=1.05~e~\text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.53~e~\text{\AA}^{-3} \end{split}$$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SUPERFLIP* (Oszlányi & Sütő, 2004); program(s) used to refine structure: *JANA2000* (Petříček *et al.*, 2000); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *JANA2000*.

Financial support from the Swedish Research Council is gratefully acknowledged

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2137).

References

Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.

- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cariati, E., Roberto, D., Ugo, R., Ford, P. C., Galli, S. & Sironi, A. (2005). *Inorg. Chem.* 44, 4077–4085.
- Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.

supplementary materials

Acta Cryst. (2010). E66, m431 [doi:10.1107/S1600536810010202]

Bis(tetrapropylammonium) di- μ_3 -iodido-di- μ_2 -iodido-diiodidodipyridinetetracopper(I)

E. Jalilian

Comment

Due to the wide variation in molecular structure, halocuprates(I) exhibit a very interesting structural chemistry. The most important factor to this structural diversity is the fact that Cu(I) can accept trigonal planar coordination, tetrahedral coordination as well as less defined intermediate arrangements. The further linkage of these units, triangles by corner-sharing or edge-sharing, tetrahedra also by face sharing yields further structural flexibility. Many different version of oligometric and polymeric species in Cu(I)X (X=Cl,Br, I) have been discovered in copper (I) halide based systems containing inflexible N- donor ligands. Stoichiometry and connectivity are dependent on the size and the coordination number of the cation that participate in the structure. The compound presented here $2[(C_{12} H_{28} N)^+ [I_3 Cu_{1.597} N C_5 H_5]^-]$ (I), is prepared from reaction between copper powder, copperoxide, tetra n-propylammoniumiodide, pyridine and hydroiodic acid. The anion in (I) has a range of Cu–I distances [2.5200 (3)–2.7752 (6) Å] while the I–Cu–I angles spread over large range [108.039 (16)–122.009 (14)°]. One of the two independent Cu positions is clearly under-occupied (Cu2, occ ≈ 0.6). This non-stoichiometry leads to local relaxations that can be seen as anomalously large and anisotropic thermal parameters on the surrounding I neighbours. The compound is light yellow in color, and it is well known that Cu cannot attain the divalent oxidation state in direct contact with iodide, and therefore we conclude that all Cu is in the monovalent state. The charge balance must instead be maintained by the protonation of either the pyridine unit or the Cu_{4-x}I₆-cluster unit, a likely scenario since the synthesis is run at a low pH value.

The attached pyridine unit is a typical pyridine with N–C and C–C ranges [1.345 (3)–1.349 (3) Å and 1.359 (5)–1.398 (4)Å respectively] The angle C–N–C is 119.2 (2)° while (N/)C–C–C the angles ranges [118.4 (2)–120.8 (2)°]. The cation is a regular tetra propylammonium ion with N–C and C–C distances range [1.518 (3)–1.521 (3) Å and 1.516 (3)–1.542 (3)Å respectively], and the C–N–C, (N/)C–C–C angels range between [107.99 (16)–111.36 (15)° and 108.40 (19)–115.60 (18)°].

Experimental

Copper powder (2.854 mmol), copper(I)oxide (2.827 mmol), hydroiodic acid (7.6 mmol) tetra n-propylammonium iodide (3.101 mmol) and pyridine (12.958 mmol) were put into an autoclave and heated at 165 °C for 19 h. It resulted in yellow crystals that luminesce vividly under UV light.

Refinement

The structures were solved by charge-flipping, giving the I, Cu, P and a major part of the C positions. Subsequently the remaining C positions were found using difference Fourier analysis. All non-hydrogen positions were refined using full matrix least squares. The hydrogen atoms were located by geometrical methods and were allowed to ride, with C-H = 1.00 Å and $U_{eq} = 1.2U_{iso}(C)$.

Figures

Fig. 1. Molecular structure with atom labelling scheme for the I—Cu-Pyridine anion and the tetrapropeylammonium cation in (I). Non H atoms are shown as 50% probability displacement ellipsoids.

Bis(tetrapropylammonium) di- μ_3 -iodido-di- μ_2 -iodido-diiodidodipyridinetetracopper(I)

Crystal data

$(C_{12}H_{28}N)_2[Cu_{3.194}I_6(C_5H_5N)_2]$	Z = 1
$M_r = 1495.3$	F(000) = 708.8
Triclinic, PT	$D_{\rm x} = 2.071 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
<i>a</i> = 8.8974 (2) Å	Cell parameters from 27591 reflections
b = 11.8076 (3) Å	$\theta = 4.3 - 32.2^{\circ}$
c = 12.2176 (2) Å	$\mu = 5.29 \text{ mm}^{-1}$
$\alpha = 73.2442 \ (18)^{\circ}$	T = 100 K
$\beta = 78.5398 \ (17)^{\circ}$	Rodd, yellow
$\gamma = 81.4137 \ (18)^{\circ}$	$0.47 \times 0.17 \times 0.13 \text{ mm}$
$V = 1198.74(5) \text{ Å}^3$	

Data collection

Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector	7574 independent reflections
Radiation source: Enhance (Mo) X-ray source	6526 reflections with $I > 3\sigma(I)$
graphite	$R_{\rm int} = 0.020$
Detector resolution: 16.5467 pixels mm ⁻¹	$\theta_{\text{max}} = 32.2^\circ, \ \theta_{\text{min}} = 4.3^\circ$
ω scans	$h = -13 \rightarrow 13$
Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008)	$k = -17 \rightarrow 17$
$T_{\min} = 0.209, \ T_{\max} = 0.623$	$l = -18 \rightarrow 18$
38326 measured reflections	

Refinement

Refinement	on	F^2
------------	----	-------

Weighting scheme based on measured s.u.'s w = 1/ $[\sigma^2(I) + 0.0025I^2]$

$R[F^2 > 2\sigma(F^2)] = 0.023$	$(\Delta/\sigma)_{\rm max} = 0.048$
$wR(F^2) = 0.068$	$\Delta \rho_{max} = 1.05 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.02	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$
7574 reflections	Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
219 parameters	Extinction coefficient: 2863
H-atom parameters constrained	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2	²)
---	----------------

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
I1	0.975221 (18)	0.302248 (12)	0.020355 (12)	0.01742 (5)	
I2	0.969321 (19)	0.432391 (12)	0.321865 (12)	0.01872 (5)	
I3	1.283574 (19)	0.118445 (12)	0.272365 (13)	0.01893 (5)	
Cu1	1.07925 (4)	0.28339 (3)	0.20757 (2)	0.01739 (9)	
Cu2	0.91317 (6)	0.49932 (4)	0.10844 (4)	0.01871 (17)	0.5968 (16)
Nla	0.8219 (2)	0.88100 (15)	0.30754 (15)	0.0131 (5)	
C11	0.7234 (3)	0.96480 (18)	0.37333 (18)	0.0144 (6)	
C12	0.7803 (3)	1.0861 (2)	0.3507 (2)	0.0222 (8)	
C13	0.6638 (3)	1.1587 (2)	0.42004 (19)	0.0194 (7)	
C21	0.7404 (3)	0.76914 (19)	0.33556 (19)	0.0154 (6)	
C22	0.7369 (3)	0.69023 (19)	0.45874 (19)	0.0171 (7)	
C23	0.6214 (3)	0.5995 (2)	0.4812 (2)	0.0210 (7)	
C31	0.9801 (3)	0.85294 (18)	0.34363 (18)	0.0149 (6)	
C32	1.0882 (3)	0.7620 (2)	0.29315 (19)	0.0174 (7)	
C33	1.2416 (3)	0.7437 (2)	0.3369 (2)	0.0212 (8)	
C41	0.8411 (3)	0.93675 (19)	0.17762 (17)	0.0155 (6)	
C42	0.6926 (3)	0.9801 (3)	0.1284 (2)	0.0278 (9)	
C43	0.7306 (3)	1.0288 (2)	-0.0044 (2)	0.0243 (8)	
N2p	0.6819 (3)	0.53437 (19)	0.11898 (18)	0.0230 (7)	
C1p	0.6020 (4)	0.4452 (2)	0.1892 (2)	0.0280 (9)	
C2p	0.4469 (4)	0.4472 (2)	0.1989 (2)	0.0281 (9)	
C3p	0.3675 (3)	0.5463 (3)	0.1331 (2)	0.0286 (9)	
C4p	0.4470 (3)	0.6379 (2)	0.0616 (2)	0.0255 (8)	
C5p	0.6058 (3)	0.6306 (2)	0.0556 (2)	0.0230 (8)	
H111	0.709622	0.924955	0.458341	0.0172*	
H112	0.615337	0.975346	0.357609	0.0172*	
H121	0.788888	1.127677	0.266172	0.0267*	
H122	0.882603	1.075863	0.37637	0.0267*	
H131	0.700703	1.238077	0.407604	0.0233*	
H132	0.561853	1.169742	0.393671	0.0233*	
H133	0.652506	1.115708	0.504295	0.0233*	
H211	0.632751	0.791309	0.318782	0.0184*	
H212	0.788247	0.721678	0.279421	0.0184*	
H221	0.704259	0.740092	0.514669	0.0206*	
H222	0.841604	0.647834	0.467763	0.0206*	
H231	0.630117	0.539099	0.556794	0.0252*	
H232	0.514642	0.640855	0.484102	0.0252*	

supplementary materials

H233	0.643691	0.559055	0.417381	0.0252*
H311	1.030484	0.928078	0.324356	0.0178*
H312	0.968261	0.826734	0.430099	0.0178*
H321	1.106057	0.790999	0.206662	0.0209*
H322	1.041211	0.684915	0.317545	0.0209*
H331	1.307175	0.675529	0.313024	0.0255*
H332	1.295805	0.817379	0.303006	0.0255*
H333	1.222332	0.726026	0.423343	0.0255*
H411	0.904564	0.879347	0.136488	0.0186*
H412	0.907379	1.003709	0.156362	0.0186*
H421	0.627616	0.912646	0.147852	0.0334*
H422	0.635112	1.044646	0.162693	0.0334*
H431	0.635019	1.06992	-0.035239	0.0292*
H432	0.809874	1.086453	-0.024139	0.0292*
H433	0.771582	0.96156	-0.039839	0.0292*
H1p	0.659276	0.374425	0.236251	0.0336*
H2p	0.391005	0.379349	0.251916	0.0337*
Н3р	0.253328	0.550155	0.13809	0.0343*
H4p	0.391506	0.709479	0.014187	0.0306*
H5p	0.664306	0.697485	0.003719	0.0276*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.01901 (9)	0.01857 (7)	0.01591 (7)	-0.00176 (5)	-0.00510 (6)	-0.00505 (5)
I2	0.02250 (10)	0.01667 (7)	0.01748 (7)	0.00238 (5)	-0.00558 (6)	-0.00593 (5)
13	0.02042 (9)	0.01691 (7)	0.02043 (7)	0.00264 (5)	-0.00814 (6)	-0.00554 (5)
Cu1	0.01693 (16)	0.01716 (12)	0.01845 (13)	0.00008 (10)	-0.00438 (11)	-0.00525 (10)
Cu2	0.0160 (3)	0.0189 (2)	0.0195 (2)	-0.00081 (17)	-0.00471 (19)	-0.00163 (17)
Nla	0.0134 (10)	0.0132 (7)	0.0128 (7)	-0.0025 (6)	-0.0018 (7)	-0.0032 (6)
C11	0.0146 (11)	0.0147 (8)	0.0134 (8)	-0.0022 (7)	0.0012 (7)	-0.0050(7)
C12	0.0211 (14)	0.0141 (9)	0.0298 (12)	-0.0046 (8)	0.0039 (10)	-0.0074 (8)
C13	0.0239 (14)	0.0161 (9)	0.0188 (10)	-0.0013 (8)	-0.0012 (9)	-0.0073 (8)
C21	0.0153 (12)	0.0148 (9)	0.0177 (9)	-0.0054 (8)	-0.0026 (8)	-0.0051 (7)
C22	0.0209 (13)	0.0135 (9)	0.0175 (9)	-0.0043 (8)	-0.0041 (8)	-0.0029 (7)
C23	0.0192 (13)	0.0158 (9)	0.0261 (11)	-0.0068 (8)	0.0024 (9)	-0.0042 (8)
C31	0.0155 (12)	0.0140 (8)	0.0172 (9)	-0.0009 (7)	-0.0053 (8)	-0.0059 (7)
C32	0.0170 (12)	0.0184 (9)	0.0186 (9)	-0.0001 (8)	-0.0039 (8)	-0.0077 (8)
C33	0.0175 (13)	0.0243 (11)	0.0256 (11)	0.0025 (9)	-0.0080 (9)	-0.0116 (9)
C41	0.0157 (12)	0.0179 (9)	0.0112 (8)	-0.0010 (8)	-0.0006 (8)	-0.0027 (7)
C42	0.0184 (14)	0.0397 (14)	0.0193 (11)	0.0019 (11)	-0.0043 (10)	-0.0001 (10)
C43	0.0270 (15)	0.0276 (12)	0.0154 (10)	-0.0001 (10)	-0.0048 (9)	-0.0014 (8)
N2p	0.0187 (12)	0.0265 (10)	0.0237 (10)	0.0039 (8)	-0.0079 (8)	-0.0065 (8)
C1p	0.0368 (17)	0.0232 (11)	0.0230 (11)	0.0038 (10)	-0.0124 (11)	-0.0030 (9)
C2p	0.0383 (17)	0.0261 (12)	0.0217 (11)	-0.0126 (11)	-0.0096 (11)	-0.0013 (9)
C3p	0.0220 (15)	0.0369 (14)	0.0267 (12)	-0.0053 (11)	-0.0081 (11)	-0.0042 (10)
C4p	0.0203 (14)	0.0252 (11)	0.0268 (12)	0.0051 (9)	-0.0068 (10)	-0.0022 (9)
C5p	0.0184 (13)	0.0252 (11)	0.0238 (11)	0.0023 (9)	-0.0056 (10)	-0.0047 (9)

Geometric parameters (Å, °)

I1—Cu1	2.5737 (4)	C31—C32	1.515 (3)
I1—Cu2	2.7752 (6)	C31—H311	1.000
I2—Cu1	2.5223 (3)	C31—H312	1.000
I2—Cu2	2.6239 (5)	C32—C33	1.526 (4)
I3—Cu1	2.5200 (3)	C32—H321	1.000
Cu1—Cu2	2.8208 (5)	С32—Н322	1.000
Cu2—N2p	2.023 (2)	C33—H331	1.000
N1a—C11	1.521 (3)	С33—Н332	1.000
N1a—C21	1.521 (3)	С33—Н333	1.000
N1a—C31	1.520 (3)	C41—C42	1.518 (4)
N1a—C41	1.518 (3)	C41—H411	1.000
C11—C12	1.522 (3)	C41—H412	1.000
C11—H111	1.000	C42—C43	1.542 (3)
C11—H112	1.000	C42—H421	1.000
C12—C13	1.527 (4)	C42—H422	1.000
C12—H121	1.000	C43—H431	1.000
C12—H122	1.000	C43—H432	1.000
C13—H131	1.000	C43—H433	1.000
С13—Н132	1.000	N2p—C1p	1.345 (3)
С13—Н133	1.000	N2p—C5p	1.349 (3)
C21—C22	1.522 (3)	C1p—C2p	1.359 (5)
C21—H211	1.000	C1p—H1p	1.000
C21—H212	1.000	C2p—C3p	1.398 (4)
C22—C23	1.525 (4)	С2р—Н2р	1.000
C22—H221	1.000	C3p—C4p	1.368 (4)
C22—H222	1.000	С3р—Н3р	1.000
C23—H231	1.000	C4p—C5p	1.391 (4)
C23—H232	1.000	C4p—H4p	1.000
С23—Н233	1.000	С5р—Н5р	1.000
Cu1—I1—Cu2	63.521 (13)	С22—С23—Н233	109.5
Cu1—I2—Cu2	66.443 (13)	H231—C23—H232	109.5
I1—Cu1—I2	118.078 (12)	H231—C23—H233	109.5
I1—Cu1—I3	119.911 (13)	H232—C23—H233	109.5
I1—Cu1—Cu2	61.722 (14)	N1a—C31—C32	115.7 (2)
I2—Cu1—I3	122.009 (14)	N1a—C31—H311	109.47
I2—Cu1—Cu2	58.506 (13)	N1a—C31—H312	109.47
I3—Cu1—Cu2	165.993 (17)	С32—С31—Н311	109.47
I1—Cu2—I2	108.039 (16)	С32—С31—Н312	109.47
I1—Cu2—Cu1	54.757 (12)	H311—C31—H312	102.4
I1—Cu2—N2p	102.85 (8)	C31—C32—C33	109.6 (2)
I1 ⁱ —Cu2—I1	117.966 (18)	С31—С32—Н321	109.47
I1 ⁱ —Cu2—I2	115.09 (2)	С31—С32—Н322	109.5
I1 ⁱ —Cu2—Cu1	127.61 (2)	С33—С32—Н321	109.5
I1 ⁱ —Cu2—Cu2 ⁱ	61.601 (15)	С33—С32—Н322	109.47
I1 ⁱ —Cu2—N2p	104.91 (6)	H321—C32—H322	109.4

supplementary materials

I1 ⁱ —Cu2—C1p	130.33 (5)	С32—С33—Н331	109.5
$I1^{i}$ —Cu2—H1p	149.99 (2)	С32—С33—Н332	109.5
12—Cu2—Cu1	55.051 (12)	С32—С33—Н333	109.5
$I2 - Cu^2 - Cu^2^i$	135.09 (2)	H331—C33—H332	109.5
I2 = Cu2 = Cu2 I2 = Cu2 = N2n	106 60 (6)	H331_C33_H333	109.5
Cu1 - Cu2 - N2n	127 48 (6)	H332_C33_H333	109.5
C11 - N1a - C21	107.99 (16)	$N_{12} - C_{41} - C_{42}$	115.60 (18)
C11 $N1a$ $C31$	109.17 (19)	N1a - C41 - H411	109 47
$C_{11} = N_{12} = C_{41}$	111 12 (15)	N1a - C41 - H412	109.17
C_{1} N_{1} C_{1}	111.12 (15)	C42 - C41 - H411	109.5
C_{21} N1a-C41	108 49 (19)	C42— $C41$ — $H412$	109.5
C_{21} N1a- C_{41}	108 72 (16)	H411 - C41 - H412	102.6
N1a-C11-C12	116 13 (18)	C41 - C42 - C43	102.0 109.5(2)
N1a— $C11$ — $H111$	109.47	C41 - C42 - H421	109.5 (2)
C12— $C11$ — $H112$	109.17	C41 - C42 - H422	109.5
H111-C11-H112	101.87	C43 - C42 - H421	109.5
$C_{11} - C_{12} - C_{13}$	108 40 (19)	C43 - C42 - H422	109.5
C11—C12—H121	109.5	H421-C42-H422	109.5
$C_{11} = C_{12} = H_{122}$	109.5	C42 - C43 - H431	109.1
C13—C12—H121	109.47	C42 - C43 - H432	109.5
C13 - C12 - H122	109.5	C42 - C43 - H433	109.5
H121—C12—H122	110.5	H431—C43—H432	109.5
C12—C13—H131	109.5	H431—C43—H433	109.5
C12—C13—H132	109.5	H432—C43—H433	109.5
C12—C13—H133	109.47	Cu2— $N2p$ — $C1p$	114.07 (17)
H131—C13—H132	109.5	Cu2— $N2p$ — $C5p$	126.45 (17)
H131—C13—H133	109.5	C1p—N2p—C5p	119.2 (2)
H132—C13—H133	109.5	N2p-C1p-C2p	122.8 (2)
N1a—C21—C22	115.4 (2)	N2p—C1p—H1p	118.6
N1a—C21—H211	109.47	C2p—C1p—H1p	118.6
N1a—C21—H212	109.47	C1p—C2p—C3p	118.4 (2)
C22—C21—H211	109.47	C1p—C2p—H2p	120.8
C22—C21—H212	109.47	C3p—C2p—H2p	120.8
H211—C21—H212	102.9	C2p—C3p—C4p	119.5 (3)
C21—C22—C23	108.7 (2)	С2р—С3р—Н3р	120.2
C21—C22—H221	109.47	С4р—С3р—Н3р	120.2
C21—C22—H222	109.47	C3p—C4p—C5p	119.3 (2)
C23—C22—H221	109.5	С3р—С4р—Н4р	120.3
С23—С22—Н222	109.47	С5р—С4р—Н4р	120.3
H221—C22—H222	110.3	N2p—C5p—C4p	120.8 (2)
C22—C23—H231	109.5	N2p—C5p—H5p	119.6
C22—C23—H232	109.5	C4p—C5p—H5p	119.6
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$.			

